Onion skin as piezoelectric material

Development of non-toxic, ultra-sensitive, and flexible bio-inspired piezoelectric nanogenerator has become a great challenge for next generation biomedical applications. High performance organic/inorganic materials based piezoelectric nanogenerators suffer from several unavoidable problems such as complex synthesis and high toxicity. Biodegradable and biocompatible piezoelectric material is utmost needed in in-vivo condition to harvest energy for biomedical applications. Here, we report a novel bio-piezoelectric nanogenerator (BPNG) using naturally abundant self-aligned cellulose fibrous untreated onion skin (OS) as efficient piezoelectric material having piezoelectric strength of 2.8 pC/N. The fabricated OSBPNG generated output voltage, current, instantaneous power density and high piezoelectric energy conversion efficiency of ≈18 V, ≈166 nA, ≈1.7 μW/cm2, and ≈61.7%, respectively, and turn on 30 green LEDs by a single device under repeated compressive stress of ≈34 kPa and ≈3.0 Hz

frequency. In addition, maximum output voltage (106 V) was achieved when 6 units are

connected in series, which instantaneously turns on 73 combined LEDs (30 green, 25 blue, and 18 red). OSBPNG is highly effective during throat movement such as coughing, drinking and swallowing. Furthermore, because it works at very low pressure originating from heart pulse or beat, it could be used in pacemakers and health care units. Finally, OSBPNG successfully differentiates speech signals, indicating its potential for speech recognition.

Title: Bio-waste onion skin as an innovative nature-driven piezoelectric material with high energy conversion efficiency

Journal: Nano Energy 2017, 42, 282-293


9 views0 comments